Mathias-Prikry type forcing and dominating real

Hiroaki Minami and Michael Hrušák

At Hejnice, Czech

31 January 2011

Introduction

Decision property, rank argument and $\mathcal{I}^{<\omega}$

 $\mathbb{M}_{\mathit{I}^*}$ and dominating real

Reference

Appendix1

Mathias-Prikry type and Laver-Prikry type forcings

Definition

Let I be an ideal on ω . Mathias-Prikry type forcing

 $\langle \boldsymbol{s}, \boldsymbol{F} \rangle \in \mathbb{M}_{I^*}$ if $\boldsymbol{s} \in [\omega]^{<\omega} \land \boldsymbol{F} \in I^* \land \boldsymbol{s} \cap \boldsymbol{F} = \boldsymbol{\emptyset}$

ordered by

 $\langle s, F \rangle \leq \langle t, G \rangle$ if $s \supset t \land F \subset G \land s \setminus t \subset G$.

Mathias-Prikry type and Laver-Prikry type forcings

Definition Let I be an ideal on ω . Mathias-Prikry type forcing

$$\langle \boldsymbol{s}, \boldsymbol{F} \rangle \in \mathbb{M}_{I^*}$$
 if $\boldsymbol{s} \in [\omega]^{<\omega} \land \boldsymbol{F} \in I^* \land \boldsymbol{s} \cap \boldsymbol{F} = \boldsymbol{\emptyset}$

ordered by

$$\langle s, F \rangle \leq \langle t, G \rangle$$
 if $s \supset t \land F \subset G \land s \setminus t \subset G$.

Laver-Prikry type forcing

 $T \in \mathbb{L}_{I^*} \text{ if } T \subset \omega^{\omega} \text{ is tree } \land \exists s \in T(\forall t \in T(s \subset t \lor t \subset s))$ and $\forall t \in T(s \subset t \to \operatorname{Succ}_T(t) = \{n \in \omega : t \check{} n \in T\} \in I^*)),$

where such $s \in T$ is called *stem* of T, denoted **stem**(T). \mathbb{L}_{I^*} is ordered by inclusion.

Mathias forcing and $\mathbb{L}_{\mathcal{F}}$ add a dominating real. It is depend on filter \mathcal{F} whether $\mathbb{M}_{\mathcal{F}}$ adds a dominating real.

Theorem (Canjar)

- 1. If \mathcal{U} is either rapid ultrafilter or not a P-point ultrafilter, then $\mathbb{M}_{\mathcal{U}}$ adds a dominating real.
- 2. If CH holds, there exists an ultrafilter ${\boldsymbol{\mathcal U}}$ such that $\mathbb{M}_{\boldsymbol{\mathcal U}}$ doesn't add a dominating real.

Mathias forcing and $\mathbb{L}_{\mathcal{F}}$ add a dominating real. It is depend on filter \mathcal{F} whether $\mathbb{M}_{\mathcal{F}}$ adds a dominating real.

Theorem (Canjar)

- 1. If \mathcal{U} is either rapid ultrafilter or not a P-point ultrafilter, then $\mathbb{M}_{\mathcal{U}}$ adds a dominating real.
- 2. If CH holds, there exists an ultrafilter ${\boldsymbol{\mathcal U}}$ such that $\mathbb{M}_{\boldsymbol{\mathcal U}}$ doesn't add a dominating real.

Question When does \mathbb{M}_{I^*} add dominating real?

Decision property

Laver forcing $\ensuremath{\mathbb{L}}$ and Mathias forcing have decision property.

Theorem

 For every sentence φ of forcing language, for every T ∈ L there exists S ≤ T with stem(S) = stem(T) such that

S ⊪_⊥ φ or S ⊩_⊥ ¬φ.

$$\langle s, B \rangle \Vdash_{\mathbb{M}} \phi \text{ or } \langle s, B \rangle \Vdash_{\mathbb{M}} \neg \phi.$$

Decision property

Laver forcing ${\mathbb L}$ and Mathias forcing have decision property.

Theorem

 For every sentence φ of forcing language, for every T ∈ L there exists S ≤ T with stem(S) = stem(T) such that

S ⊪_⊥ φ or S ⊪_⊥ ¬φ.

For every sentence *φ* of forcing language, for every (*s*, *A*) ∈ M, there exists infinite *B* ⊂ *A* such that

$$\langle s,B
angle$$
 IFM ϕ or $\langle s,B
angle$ IFM $\neg\phi$.

The decision property doesn't hold for Mathias-Prikry and Laver-Prikry type forcing in general.

$\mathcal{I}^{<\omega}$

When we use \mathbb{L}_{I^*} , rank argument is important. But we can't define rank for \mathbb{M}_{I^*} in general. When we use \mathbb{M}_{I^*} , $I^{<\omega}$ is significant.

$\mathcal{I}^{<\omega}$

When we use \mathbb{L}_{I^*} , rank argument is important. But we can't define rank for \mathbb{M}_{I^*} in general. When we use \mathbb{M}_{I^*} , $I^{<\omega}$ is significant. For an ideal I on ω ,

 $I^{<\omega} = \{ \mathsf{A} \subset [\omega]^{<\omega} \setminus \{ \emptyset \} : \exists I \in I \forall a \in \mathsf{A}(a \cap I \neq \emptyset) \}.$

Then $I^{<\omega}$ is an ideal on $[\omega]^{<\omega} \setminus \{\emptyset\}$.

$\mathcal{I}^{<\omega}$

When we use \mathbb{L}_{I^*} , rank argument is important. But we can't define rank for \mathbb{M}_{I^*} in general. When we use \mathbb{M}_{I^*} , $I^{<\omega}$ is significant. For an ideal I on ω ,

$$I^{<\omega} = \{ \mathbf{A} \subset [\omega]^{<\omega} \setminus \{ \emptyset \} : \exists I \in I \forall a \in \mathbf{A} (a \cap I \neq \emptyset) \}.$$

Then $I^{<\omega}$ is an ideal on $[\omega]^{<\omega} \setminus \{\emptyset\}$.

Theorem

For every sentence ϕ of forcing language, for $\mathbf{s} \in [\omega]^{<\omega}$ define

 $X_{s} = \{t \in [\omega \backslash s]^{<\omega} : \exists F \in I^{*} ((s \cup t) \cap F = \emptyset \land \langle s \cup t, F \rangle \Vdash \phi)\}$

Then if $X_s \in (I^{<\omega})^+$, for every $F \in I^*$ with $s \cap F = \emptyset$, there exists $(s \cup t, G) \leq (s, F)$ such that $(s \cup t, G) \Vdash_{\mathbb{M}_{I^*}} \phi$. If $X_s \in I^{<\omega}$, for every $F \in I^*$ with $s \cap F = \emptyset$, there exists $(s \cup t, G) \leq (s, F)$ such that $(s \cup t, G) \Vdash_{\mathbb{M}_{I^*}} \neg \phi$.

\mathbb{M}_{I^*} and $I^{<\omega}$ -positive set

Proof.

Suppose X_s ∈ (I^{<ω})⁺. Let F ∈ I^{*} with s ∩ F = Ø. Then
 [F]^{<ω} ∩ X_s ≠ Ø. Let t ∈ X_s ∩ [F]^{<ω}. By definition of X_s, there exists H ∈ I^{*} such that ⟨s ∪ t, H⟩ ⊩ φ.

Appendix1

\mathbb{M}_{I^*} and $I^{<\omega}$ -positive set

Proof.

1. Suppose $X_s \in (I^{<\omega})^+$. Let $F \in I^*$ with $s \cap F = \emptyset$. Then $[F]^{<\omega} \cap X_s \neq \emptyset$. Let $t \in X_s \cap [F]^{<\omega}$. By definition of X_s , there exists $H \in I^*$ such that $\langle s \cup t, H \rangle \Vdash \phi$. Since I^* is filter, $G = F \cap H \in I^*$. Since $t \subset F$, $\langle s \cup t, G \rangle \leq \langle s, F \rangle$. So $\langle s \cup t, G \rangle \leq \langle s, F \rangle$ and $\langle s \cup t, G \rangle \Vdash \phi$.

Appendix

\mathbb{M}_{I^*} and $I^{<\omega}$ -positive set

Proof.

- 1. Suppose $X_s \in (I^{<\omega})^+$. Let $F \in I^*$ with $s \cap F = \emptyset$. Then $[F]^{<\omega} \cap X_s \neq \emptyset$. Let $t \in X_s \cap [F]^{<\omega}$. By definition of X_s , there exists $H \in I^*$ such that $\langle s \cup t, H \rangle \Vdash \phi$. Since I^* is filter, $G = F \cap H \in I^*$. Since $t \subset F$, $\langle s \cup t, G \rangle \leq \langle s, F \rangle$. So $\langle s \cup t, G \rangle \leq \langle s, F \rangle$ and $\langle s \cup t, G \rangle \Vdash \phi$.
- 2. Suppose $X_s \in I^{<\omega}$.

\mathbb{M}_{I^*} and $I^{<\omega}$ -positive set

Proof.

- 1. Suppose $X_s \in (I^{<\omega})^+$. Let $F \in I^*$ with $s \cap F = \emptyset$. Then $[F]^{<\omega} \cap X_s \neq \emptyset$. Let $t \in X_s \cap [F]^{<\omega}$. By definition of X_s , there exists $H \in I^*$ such that $\langle s \cup t, H \rangle \Vdash \phi$. Since I^* is filter, $G = F \cap H \in I^*$. Since $t \subset F$, $\langle s \cup t, G \rangle \leq \langle s, F \rangle$. So $\langle s \cup t, G \rangle \leq \langle s, F \rangle$ and $\langle s \cup t, G \rangle \Vdash \phi$.
- 2. Suppose $X_s \in I^{<\omega}$.

Let $l \in I$ such that $\forall x \in X_s(x \cap l \neq \emptyset)$. Let $\langle s, F \rangle \in \mathbb{M}_{I^*}$. Let $H = F \setminus l \in I^*$. Then there exists $\langle s \cup t, G \rangle \leq \langle s, H \rangle$ such that $\langle s \cup t, G \rangle$ decide ϕ . Since $t \cap l = \emptyset$, $t \notin X_s$. Therefore $\langle s \cup t, G \rangle \Vdash \neg \phi$.

$\mathbb{M}_{\mathit{I}^*}$ and dominating real

Theorem (Hrušák, Minami)

The following are equivalent.

- 1. \mathbb{M}_{I^*} adds a dominating real.
- 2. $I^{<\omega}$ is not P^+ ideal.

Definition

 \mathcal{J} is P^+ -ideal if for every decreasing sequence $\{X_n : n \in \omega\}$ of \mathcal{J} -positive set, there exists $X \in \mathcal{J}^+$ such that $X \subset^* X_n$.

Theorem (Hrušák, Minami)

The following are equivalent.

- 1. \mathbb{M}_{I^*} adds a dominating real.
- 2. $I^{<\omega}$ is not \mathbf{P}^+ ideal.

Proof. From (1) to (2). Let \dot{g} be a $\mathbb{M}_{\mathcal{I}^*}$ -name for a dominating real. For $f \in \omega^{\omega} \cap V$, there exists $s_f \in [\omega]^{<\omega}$, $F_f \in \mathcal{I}^*$ and $n_f \in \omega$ such that

$$\langle s_f, F_f \rangle \Vdash \forall n \geq n_f(f(n) \leq \dot{g}(n)).$$

Since $cf(\mathfrak{d}) > \omega$, there exists $s \in [\omega]^{<\omega}$ and $n \in \omega$ such that

$$\mathcal{F} = \{ \mathbf{f} \in \omega^{\omega} : \mathbf{s}_{\mathbf{f}} = \mathbf{s} \land \mathbf{n}_{\mathbf{f}} = \mathbf{n} \}$$

is a dominating family. Fix such $\mathbf{s} \in [\omega]^{<\omega}$ and $\mathbf{n} \in \omega$. Define

$$\begin{aligned} X_s &= \{t \in [\omega \setminus \max(s)]^{<\omega} : \\ \exists F \in I^* \exists m \ge n (\langle s \cup t, F \rangle \text{ decides } \dot{g}(m)) \}. \end{aligned}$$

Claim

$$\begin{aligned} X_s &= \{t \in [\omega \setminus \max(s)]^{<\omega} : \\ &\exists F \in I^* \exists m \ge n \, (\langle s \cup t, F \rangle \, decides \, \dot{g}(m))\} \in (I^{<\omega})^+. \end{aligned}$$

Let $z_t = \{m \ge n : \exists F \in \mathcal{I}^*(\langle s \cup t, F \rangle \text{ decides } \dot{g}(m))\}$. Then define $\langle k_t, l_t \rangle \in \omega \times \omega$ for $t \in X_s$ by

$$k_t = \begin{cases} \max(z_t) & \text{if } |z_t| < \omega \\ \min(z_t \setminus \max(t)) & \text{otherwise.} \end{cases}$$

Choose $I_t \in \omega$ so that there exists $F \in I^*$ so that $\langle s \cup t, F \rangle \Vdash \dot{g}(k_t) = I_t$. Define $H : X_s \to \omega \times \omega$ by $H(t) = \langle k_t, I_t \rangle$.

Claim

For every $\mathbf{m} \in \omega$, $\mathbf{H}^{-1}[(\omega \setminus \mathbf{m}) \times \omega] \in (\mathcal{I}^{<\omega})^+$.

Let $K = \{k_t : t \in X_s\}$. Let $\{k_i : i \in \omega\}$ be the increasing enumeration of K. Define $L_i = \{l_t : k_i = k_t \land t \in X_s\}$.

Claim

 $\exists^{\infty}i\in\omega\bigl(|L_i|=\omega\bigr).$

Proof

Assume to the contrary, $\forall^{\infty} i \in \omega(|L_i| < \aleph_0)$. Then we can define $h : \omega \to \omega$ by

 $h(m) = \begin{cases} \max(L_i) \\ \text{if there exists } i \in \omega \text{ such that } m = k_i \text{ and } |L_i| < \aleph_0. \\ \\ 0 \\ \text{otherwise.} \end{cases}$

Proof.

Since \mathcal{F} is a dominating family, there exists $f \in \mathcal{F}$ and $m_0 > n$ such that $\forall m \ge m_0(h(m) \le f(m))$.

Proof.

Since \mathcal{F} is a dominating family, there exists $f \in \mathcal{F}$ and $m_0 > n$ such that $\forall m \ge m_0(h(m) \le f(m))$. However there exists $t \in H^{-1}[(\omega \setminus m_0) \times \omega] \cap [F_f]^{<\omega}$ since $H^{-1}[(\omega \setminus m_0) \times \omega] \in (\mathcal{I}^{<\omega})^+$.

Proof.

Since \mathcal{F} is a dominating family, there exists $f \in \mathcal{F}$ and $m_0 > n$ such that $\forall m \ge m_0(h(m) \le f(m))$. However there exists $t \in H^{-1}[(\omega \setminus m_0) \times \omega] \cap [F_f]^{<\omega}$ since $H^{-1}[(\omega \setminus m_0) \times \omega] \in (\mathcal{I}^{<\omega})^+$. By definition of h, there exists $H \in \mathcal{I}^*$ and $k_t \ge m_0$ such that

 $\langle s \cup t, H \rangle \Vdash \dot{g}(k_t) \leq h(k_t) (\leq f(k_t)).$

Proof.

Since \mathcal{F} is a dominating family, there exists $f \in \mathcal{F}$ and $m_0 > n$ such that $\forall m \ge m_0(h(m) \le f(m))$. However there exists $t \in H^{-1}[(\omega \setminus m_0) \times \omega] \cap [F_f]^{<\omega}$ since $H^{-1}[(\omega \setminus m_0) \times \omega] \in (\mathcal{I}^{<\omega})^+$. By definition of h, there exists $H \in \mathcal{I}^*$ and $k_t \ge m_0$ such that

 $\langle s \cup t, H \rangle \Vdash \dot{g}(k_t) \leq h(k_t) (\leq f(k_t)).$

However $\langle s, F_f \rangle \Vdash \forall m \ge n(f(m) < \dot{g}(m))$ and $\langle s, F_f \rangle$ is compatible with $\langle s \cup t, H \rangle$. It is contradiction.

Without loss of generality, we can assume for all $i \in \omega |L_i| = \aleph_0$. Let $Y_m = \{H^{-1}[\bigcup_{m \ge i} L_i]\}$ for $m \ge n$. Then $Y_{m+1} \subset Y_m$. Claim $Y_m \in (I^{<\omega})^+$ for $m \ge n$. Let $Y \subset^* Y_m$ for $m \ge n$. We shall show $Y \in I^{<\omega}$. Assume to the contrary that $Y \in (I^{<\omega})^+$. Define a function g from ω to ω by

 $g(m) = \begin{cases} \max\{l_t : \exists t \in Y(m = k_t)\} \\ \text{if there exists } t \in Y \text{ such that } k_t = m \\ 0 \\ \text{otherwise.} \end{cases}$

Let $Y \subset^* Y_m$ for $m \ge n$. We shall show $Y \in I^{<\omega}$. Assume to the contrary that $Y \in (I^{<\omega})^+$. Define a function g from ω to ω by

$$g(m) = \begin{cases} \max\{I_t : \exists t \in Y(m = k_t)\} \\ \text{if there exists } t \in Y \text{ such that } k_t = m \\ 0 \\ \text{otherwise.} \end{cases}$$

Since \mathcal{F} is a dominating family, $\exists f \in \mathcal{F}(g \leq^* f)$. Let $m_0 \geq n$ such that $g(m) \leq f(m)$ for $m \geq m_0$.

Let $Y \subset^* Y_m$ for $m \ge n$. We shall show $Y \in I^{<\omega}$. Assume to the contrary that $Y \in (I^{<\omega})^+$. Define a function g from ω to ω by

$$g(m) = \begin{cases} \max\{I_t : \exists t \in Y(m = k_t)\} \\ \text{if there exists } t \in Y \text{ such that } k_t = m \\ 0 \\ \text{otherwise.} \end{cases}$$

Since \mathcal{F} is a dominating family, $\exists f \in \mathcal{F}(g \leq^* f)$. Let $m_0 \geq n$ such that $g(m) \leq f(m)$ for $m \geq m_0$. Since $Y \subset^* Y_m$ for $m \geq n$, $F_f \in I^*$ and $Y \in (I^{<\omega})^+$, there exists $m \geq m_0$ and $t \in Y \cap Y_m \cap F_f$.

Let $Y \subset^* Y_m$ for $m \ge n$. We shall show $Y \in I^{<\omega}$. Assume to the contrary that $Y \in (I^{<\omega})^+$. Define a function g from ω to ω by

$$g(m) = \begin{cases} \max\{I_t : \exists t \in Y(m = k_t)\} \\ \text{if there exists } t \in Y \text{ such that } k_t = m \\ 0 \\ \text{otherwise.} \end{cases}$$

Since \mathcal{F} is a dominating family, $\exists f \in \mathcal{F}(g \leq^* f)$. Let $m_0 \geq n$ such that $g(m) \leq f(m)$ for $m \geq m_0$. Since $Y \subset^* Y_m$ for $m \geq n$, $F_f \in \mathcal{I}^*$ and $Y \in (\mathcal{I}^{<\omega})^+$, there exists $m \geq m_0$ and $t \in Y \cap Y_m \cap F_f$. Since $t \in Y$ there exists $F \in \mathcal{I}^*$ such that $\langle s \cup t, F \rangle \Vdash \dot{g}(m) \leq g(m)$.

Let $Y \subset^* Y_m$ for $m \ge n$. We shall show $Y \in I^{<\omega}$. Assume to the contrary that $Y \in (I^{<\omega})^+$. Define a function g from ω to ω by

$$g(m) = \begin{cases} \max\{I_t : \exists t \in Y(m = k_t)\} \\ \text{if there exists } t \in Y \text{ such that } k_t = m \\ 0 \\ \text{otherwise.} \end{cases}$$

Since \mathcal{F} is a dominating family, $\exists f \in \mathcal{F}(g \leq^* f)$. Let $m_0 \geq n$ such that $g(m) \leq f(m)$ for $m \geq m_0$. Since $Y \subset^* Y_m$ for $m \geq n$, $F_f \in I^*$ and $Y \in (I^{<\omega})^+$, there exists $m \geq m_0$ and $t \in Y \cap Y_m \cap F_f$. Since $t \in Y$ there exists $F \in I^*$ such that $\langle s \cup t, F \rangle \Vdash \dot{g}(m) \leq g(m)$. However $\langle s, F_f \rangle \Vdash \forall m \geq n(f(m) < \dot{g}(m))$ " and $\langle s \cup t, F \rangle$ is compatible with $\langle s, F_f \rangle$. It is contradiction. Therefore $Y \in I^{<\omega}$. So $I^{<\omega}$ is not P^+ -ideal.

leference

Appendix1

From (2) to (1). Let $\langle X_n : n \in \omega \rangle$ be a decreasing sequence of $(I^{<\omega})^+$ without pseudointersection in $(I^{<\omega})^+$. Let $\langle a_k : k \in \omega \rangle$ be an enumeration of $[\omega]^{<\omega} \setminus \{\emptyset\}$. Let \dot{a}_{gen} be a \mathbb{M}_{I^*} -name for \mathbb{M}_{I^*} -generic real($\subset \omega$). Define \mathbb{M}_{I^*} -name \dot{g} for a function from ω to ω by

$$\mathbb{H} \dot{g}(n) = \min\{k : a_k \subset [\dot{a}_{gen}]^{<\omega} \cap X_n \land \\ \max(\bigcup\{a_m : l < n \land m = \dot{g}(l)\}) < \min(a_k)\}.$$

leterence

Appendix1

From (2) to (1). Let $\langle X_n : n \in \omega \rangle$ be a decreasing sequence of $(I^{<\omega})^+$ without pseudointersection in $(I^{<\omega})^+$. Let $\langle a_k : k \in \omega \rangle$ be an enumeration of $[\omega]^{<\omega} \setminus \{\emptyset\}$. Let \dot{a}_{gen} be a \mathbb{M}_{I^*} -name for \mathbb{M}_{I^*} -generic real($\subset \omega$). Define \mathbb{M}_{I^*} -name \dot{g} for a function from ω to ω by

$$\mathbb{H} \dot{g}(n) = \min\{k : a_k \subset [\dot{a}_{gen}]^{<\omega} \cap X_n \land$$
$$\max(\bigcup\{a_m : l < n \land m = \dot{g}(l)\}) < \min(a_k)\}.$$

We shall show \dot{g} be a dominating real. Let $f \in \omega^{\omega} \cap V$ and $\langle s, F \rangle \in \mathbb{M}_{I^*}$. Let

 $I_f = \{a_k \in [\omega]^{<\omega} \setminus \{\emptyset\} : \exists n \in \omega (a_k \in X_n \land k \leq f(n))\}.$

Then $I_f \subset^* X_n$ for every $n \in \omega$. Therefore $I_f \in I^{<\omega}$ by definition of X_n . Let $\hat{I} \in I$ such that $\forall a \in I_f(a \cap I \neq \emptyset)$. Then $F \setminus I \in I^*$ and $[F \setminus I]^{<\omega} \cap I_f = \emptyset$.

Claim

Let $\langle t_n : n < \alpha \rangle$ be a sequence of finite subsets of ω so that

- 1. $t_n \in [s \cup (F \setminus I)]^{<\omega} \cap X_n$
- $2. \max(t_n) < \min(t_{n+1})$
- 3. $\exists k \in \omega(t_n = a_k \land k \leq f(n))$

Then $\alpha \leq |\mathbf{s}|$.

Proof of Claim.

If $t \in [F \setminus I]^{<\omega}$, then $t = a_k$ and $t \in X_n$ implies k > f(n) by $[F \setminus I]^{<\omega} \cap I_f = \emptyset$. So by (2), $\alpha \le |s|$. Put |s|=m. Then $\langle s, F \setminus I \rangle \le \langle s, F \rangle$ and

 $\langle s, F \setminus I \rangle \Vdash \forall n > m(f(n) < \dot{g}(n)).$

Appendix^{*}

ultrafilter case

Definition (Laflamme)

An ultrafilter \mathcal{U} is strong P-point if for every ω -sequence of closed subset $C_n \subset \mathcal{U}$, there exists a partition of ω into finite intervals I_n such that for any sets $B_n \in C_n$,

$$\bigcup_n (B_n \cap I_n) \in \mathcal{U}.$$

Theorem (Blass-Laflamme)

Suppose \mathcal{U} is an ultrafilter. Then the following are equivalent.

- 1. \mathcal{U} is a strong **P**-point.
- 2. $\mathcal{U}^{<\omega}$ is **P**⁺ filter.
- 3. $\mathbb{M}_{\mathcal{U}}$ doesn't add a dominating real.

Decision property, rank argument and $\mathcal{I}^{<\omega}$

 \mathbb{M}_{I^*} and dominating real

Reference

Appendix1

Thank you!

- Michael Hrušák and Hiroaki Minami, "Mathias-Prikry type forcing and Laver-Prikry type forcing", preprint.
- 2. Andreas Blass, "Strong **P**-points and the Hrušák-Minami condition", preprint.

Appendix: Ultrafilter

Definition

Let \mathcal{U} be a filter on ω .

- 1. \mathcal{U} is selective ultrafilter if $\forall f \in \omega^{\omega} \exists U \in \mathcal{U}(f \upharpoonright U \text{ is one-to-one or constant}).$
- 2. \mathcal{U} is nowhere dense ultrafilter if $\forall f: \omega \rightarrow 2^{\omega} \exists U \in \mathcal{U}(F[U] \text{ is nohere dense}).$
- 3. \mathcal{U} is rapid if $\forall f \in \omega^{\omega} \exists U \in \mathcal{U}(|U \cap f(n)| \leq n)$.
- 4. \mathcal{U} is P-point ultrafilter if $\forall f \in \omega^{\omega} \exists U \in \mathcal{U}(f \upharpoonright U \text{ is finite-to-one or constant}).$

Go Back